
 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 1

MicroCODE Consulting Services
Application Development Notes

{2012-05} MicroCODE Software Support Process v010.docx

 Subject: Application Development and Maintenance Process

Audience: MicroCODE Customers
 Purpose: Explanation of recommended App support process
 Author: Tim McGuire

 Last Updated: Sunday, April 17, 2022

Background
Developing complex manufacturing software applications, and supporting time critical manufacturing, requires a
proactive and highly responsive software support process.

Requirements
MicroCODE sees application development as a set of concentric ‘Circles’*. An application ‘Circle’ consists of the
following elements:

• A code base used to build all parts of a solution
• A documentation set describing the use of the code base
• A team, or allocated time for personnel within a team, to support the Circle activities

The following application Circles must be supported concurrently, at a minimum:

Internal Development Circle (ALPHA Code)
This Circle represents the ‘next major release’ currently being development. The Business has presented
requirements, they have been defined, documented, and approved, and the application team is implementing,
documenting, and testing a new version of the application which fulfills these requirements. This is ‘long term’
activity.

Plant Pilot Circle (BETA Code)
This Circle represents the ‘current major release’ being tested and supported in selected customer sites. There
could be multiple sites using the beta release in Production. There should only be one release in Beta Circle at
any one time. A minimum of three (3) sites, varying in environment to stress the solution, must be completed to
exit the Pilot phase.

Plant Production Sites (PRODUCTION Code)
This Circle represents the ‘previous major release(s)’ which are running actually Production sites. Based on
plant upgrade schedules and downtime availability there will be multiple versions in the field. All of these versions
must be supported concurrently.

* Note: In 2017 I discovered that Microsoft refers to these ‘Circles’ as ‘Rings’, see…
 https://blogs.office.com/2015/08/12/managing-office-365-updates/

https://blogs.office.com/2015/08/12/managing-office-365-updates/

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 2

Design
Application development must be viewed as parallel activities in order to respond to customers in a timely fashion.
At the outside there are the Customers who are actively using the application, possibly multiple versions of it. On
the inside are the Developers working to implement new features and functionality. And, between the two are
Support Staff to control access to the expensive resources, prioritize defect resolutions, and provide the
Customers with immediate work-around or training to get past non-application issues.

* Slow, except for critical Defect Resolution (‘Hot Fixes’) which must be fast and override other development
priorities.

* Support, except for critical Defect Resolution (‘Hot Fixes’) which must be fast and override other development
priorities.

Beta / Pilot

Alpha / Demo

Production / Critical

Customers

Developers

Support Staff

Fast

Slow*

As needed
Support / Critical

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 3

Activities
Why represent each version as a ‘Circle’?
Because each released version will go through a cycle of multiple builds over its lifetime as a result of a healthy
customer support process. This will continue until a Release goes to ‘End of Life’ and support for that particular
Release is terminated, with fair warning given to all customers of course.

Any Released Build

Defect Correction
Release

Component Support
Release

Defect Correction
Release

New Feature
Release

v1.0.8 (12)

v1.1.8 (1)

v1.1.8 (2)

v1.1.9 (1)

v1.1.9 (2)

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 4

Version Control
Version control must support the parallel activities described on the previous pages. Versions in Production must
be able to be patched for critical defects or critical enhancements to meet the needs of the customers. Example
product version numbering is shown below.

The red arrows illustrate the need to fix defects first in the version where they arise…creating a new Build
Number (nnn)—immediately shipping the resolution into Production—and then, carrying that defect resolution
down into all newer code Circles, possibly with different implementations, or simple checking that the defect
does not exist in the newer Builds.

Beta / Pilot

Alpha / Demo

v1.0.7 (55)

v1.0.8 b (n)

v2.0.0 a (n)
Production / Critical

v1.0.7 (54)
v2.0.0 a (n+1)

v1.0.6 (54+1)

v1.0.7 (54+1)

v1.0.8 b (n+1)
v1.0.6 (54)

v1.0.5 (124)

Support / Critical

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 5

Risk, Expense, and Urgency
The further out you go in the Circles greater the risk and expense associated with a defect or defect correction.

Unit Testing: This happens at the application code level; or, said another way, in the code used to write a
standalone program or application. These tests are run by the developer, or development-pair, in the Alpha, SPR,
and SER Builds.

Integration Testing: Is conducted to evaluate the compliance or interactions of a system components (or whole
systems) with specified functional requirements. These tests are run by the development teams in the Alpha,
SPR, and SER Builds.

System (Acceptance) Testing (SAT): Validates the complete and fully integrated software product, checking to
see if the software works the way they say it is supposed to. These tests are run by the development and support
teams in the Beta Builds before release to the Pilot Site.

(User) Acceptance Testing (UAT): evaluate the system's compliance with the business requirements and
assess whether it is acceptable for delivery. These tests are run by the support and customers teams at the Pilot
Site in the Beta Builds.

Beta / Pilot

Alpha / Demo

Production / Critical

Unit Testing

Integration Testing

SAT

UAT

SPR / SER

Support

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 6

Flexibility, Time, and Options
The further into the Circles you go the greater the time and flexibility associated with any software change.

Beta / Pilot

Alpha / Demo

Production / Critical

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 7

I’ve been drawing these pictures since the 1980’s, here is Microsoft’s version in 2017:

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 8

Defect Severity Definition
In order to prioritize defect resolution a severity must be associated with every System Issue logged by the
Support Staff, and the severity must be agreed upon with the Customer / Production Site. By definition every call
into the Support Staff must be logged as a Support Issue (e.g.: A ‘Ticket Process’).

These are MicroCODE’s definitions, impact statements, and recommended responses.

Severity Description Impact Response

1 System crash, complete loss of a major system
component

Lost Units or loss of
vehicle integrity

Immediate defect
resolution and Build

Release (Hours/Days)

2
Function fails, no work-around is possible, or

missed defect or buildable job that was not able
to be error proofed

Lost Units or loss of
vehicle integrity

Immediate defect
resolution and Build

Release (Hours/Days)

3 Function fails, work-around is possible, or
opening erroneous defects on vehicles

Loss of vehicle
integrity

Defect resolution and
Build Release
(Days/Weeks)

4
Function fails, no impact to Production, no work-

around is necessary, or defect is caused by
reconfiguring a Station during Production

Local Support
required

Defect resolution in next
Minor Release

(Weeks/Months)

5 Display, Report or Tool problem - no impact on
system operation

Possible time lost
in the future due to

poor information

Defect resolution in next
Minor Release

(Weeks/Months)

6 Annoyances Loss of resource
time, delays

Business Case required
for resolution

Once severities and responses are defined then support processes can be defined and be held up to those
standards for customer support reviews.

Examples of these processes are described follow the next pages…

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 9

Git
Git is the de facto standard for source code control. The beauty of Git is its flexibility, the danger of Git is its
flexibility. Because it is so flexible it is very easy to branch yourself into oblivion without a well-defined process.

Companies have established internal methodologies for using Git, and some open-source communities have
done so as well, one well established method is called Gitflow. This is method is available as an extension to Git
to automatically enforce the rule set.

A good tutorial on Gitflow is available here:
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 10

MDS
Gitflow has a defined process very similar to MicroCODE’s.
This is exactly model I have worked from and evangelized since the 1980s.
Our Git Process, which combines ‘Git Flow’ and our established process is called the MicroCODE Development
System (MDS) internally. Step-by-Step instructions for using Gitflow to implement our internal process—MDS—is
found in Appendix A.

Branch
Type Git Flow MDS MDS (1980s-1990s Process)

trunk master
or main Production

+ Hot Fixes
MAINTENANCE – Builds running at customer sites

branch hot fix SPR – Software Problem Report (Defect or Critical Change)

branch release Beta
+ Hot Fixes

BETA (Builds running internally and/or at Pilot Sites)

branch hot fix SPR – Software Problem Report (Defect or Critical Change)

trunk develop Alpha
+ New Features

DEVELOPMENT (internal only)

branch feature SER – Software Enhancement Request (new features)

* Not shown in the diagram above is the ability to Hot Fix a Beta Release.

These represent prior Production Releases that are still in service at one or more Customer
Sites and may need to be patched (Hot Fix Support) for a period of time under a Support
Contract.

This represents prior Production Releases that are no longer in service, they are end-of-life, or
‘retired’, and are for reference only.

Production
(Current Version)

Beta
(Pilot Sites)

Alpha
(Internal Only)

Beta Alpha Production

vM.m.r -1
(In Production)

vM.m.r -2
(In Production)

vM.m.r -N
(Retired)

vM.m.r (n)
(In Production)

vM.m.r Beta (n)
(Pilot Sites)

vM.m.r Alpha (n)
(Internal Only)

*

*

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 11

Git Branching – MicroCODE MDS Naming Conventions
In order to use Git and GitHub safety and effectively everyone on the development and support teams needs to
use the same Git naming convention.

Branch
Type MDS Activity Git Branch Name

branch Retired * Previous
Release -N Product-M.m.r-bbb-retired

branch Support
+ Hot Fixes

Previous
Release -2 Product-M.m.r-bbb-support

branch Customer
Hot Fix Product-M.m.r-bbb-support-sprnnnn

branch Support
+ Hot Fixes

Previous
Release -1 Product-M.m.r-bbb-support

branch Customer
Hot Fix Product-M.m.r-bbb-support-sprnnnn

trunk Production
+ Hot Fixes

Customer
Release Product-M.m.r-bbb-production

branch Customer
Hot Fix Product-M.m.r-bbb-production-sprnnnn

branch Beta
+ Hot Fixes

Pilot Site
Beta Release Product-M.m.r-bbb-beta

branch Customer
Hot Fix Product-M.m.r-bbb-beta-sprnnnn

trunk Alpha
+ New Features

Internal
Alpha Release Product-M.m.r-bbb-alpha

branch Internal
New Feature Product-M.m.r-bbb-alpha-sernnnn

* No Hot Fix support, these Sites are actively upgraded to a ‘Production’ or ‘Support’ Release.

Examples of Git Branch Names:

Control_SEP-1.0.0-017-retired = Control (SEP) App v1.0.0 (017) Archived Release

Control_EPx-1.0.0-001-support = Control (EPx) Station v1.0.0 (002) Support Release

Control_EPx-1.0.0-002-production = Control (EPx) Station v1.0.0 (002) Production Release

LADDERS_ABCLX5-1.1.0-011-beta = LADDERS (Logix5000) v1.1.0 Beta (011) Pilot Site Release

Control_EPP-2.1.0-007-production = Control (EPP) App v2.1.0 (007) Production Release

Control_EPP-2.1.0-008-production-sprnnn = Control (EPP) App v2.1.0 (009) Hot Fix for {SPR#nnn}

Defect_EPx-1.0.0-017 = Class Library Defect (EPx) v1.0.0 (017) Production Release

Control_SEP-2.1.1-011-alpha = Control (SEP) App Internal Build

Control_SEP-2.1.1-001-alpha-sernnn = Control (SEP) App New Feature for {SER#nnn}

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 12

MDS – Notes
This naming system always tells the developer six (6) things:

• Product
• Version
• Code Circle
• Starting Build of a Hot Fix development
• Starting Build of a New Feature development

Our process has the following implications, benefits, and requirements:

• Customers are running a proven version of our App or Service at all times (Production Trunk)
• We can Hot Fix any Production version at any time to provide responsive support.
• Hot Fixes to a Production Release are carried into the current Alpha and Beta Builds as appropriate.

• Customers running a Beta version—as a Pilot Site—can receive the exact same support as a Production

site, i.e.: we can Hot Fix any Beta version at any time.
• Depending on the scope of the Hot Fix it may have to be applied to the current Production Release as

well, e.g.: If the defect being corrected only has to do with a New Feature in the Beta then only the Beta
Release is updated; if the Hot Fix is a defect found to exist in the current Production Release then it
must be updated as well.

• Beta Releases directly become the next Production Release after passing all Pilot Site requirements.
• Hot Fixes to a Beta Release are carried into the current Alpha Builds.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 13

Application Version Numbers

The application software version numbering is documented as follows…

vM.m.r Circle (bbb)

M = Major software version; represents application architecture, underlying technology, etc.
 Incrementing this number is associated with a ‘Major Release’.

m = Minor software version; represents new components within the application.
 Incrementing this number is associated with a ‘Component Support Release’.

r = Incremental Release Number; represents collections of new features within the application.
 Incrementing this number is associated with a ‘New Feature Release’.

Circle = Development Circle as in ALPHA/DEMO, BETA/PILOT, or PRODUCTION.
 In the case of PRODUCTION, the Circle label is removed.

 Changing this label is associated with a ‘Code Circle Promotion’, i.e.: Internal Build Promotion. This is

a rebuild/relabeling only no code is changed, e.g.: v2.0.0 Beta (017) v2.0.0 (001).

b = Build Number. This is the internal build number of the application from within the development group; any time

code is changed and released into the Support Staff this number must be incremented, no matter how
small the change. This number is expected to fall in the range 001 to 999; more changes than this indicates a
flawed test cycle or the implementation of new features that should have incremented ‘R’ and reset B to 001.

 Incrementing this number is associated with a ‘Defect Correction Build’ or ‘Critical Enhancement Build’.

Displayed and Documented Version Number Examples:

App_Name v1.0.5 (124) – Production Version found in Customer Sites.

App_Name v1.0.5 (125) – A defect correction or critical enhancement to (124).

App_Name v1.0.6 Beta (007) – Beta Version found only in Pilot Sites and Support Staff Lab.

App_Name v2.0.0 Alpha (089) – Alpha Version found only on Working Machines or in the Support Staff Lab.

Git/GitHub and File Name Version Number Examples:

App_Name-v1.0.5-124 – Production Version found in Customer Sites.

App_Name-v1.0.5-125 – A defect correction or critical enhancement to (124).

App_Name-v1.0.6b007 – Beta Version found only in Pilot Sites and Support Staff Lab.

App_Name-v2.0.0a089 – Alpha Version found only on Working Machines or in the Support Staff Lab.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 14

Defect Resolution Process: ‘Defect Correction Release’
Defect resolution releases are defined as those required to correct Severity 1, 2, or 3 defects *or* the Production
Site can present a Business Case showing a significant loss of time, money or resources due to a Severity 4, 5,
or 6 defect.

Situation: Version v1.1.9 (22) of an application is in Production. A defect arises that is deemed Severity 2.

Step 1: The Support Staff stage a copy of the Production Site in a lab—or visit the customer site—to reproduce
the problem. Staging a copy of the Production Site requires all affected components be set to the same
application versions as the Production Site, the site’s data be loaded (possibly), and then a simulation run to
recreate their issue.

Step 2: Once the issue is re-created the Developers are called in to recreate the issues in debug mode to isolate
the code issue(s), engineer a fix, test the fix, document the resolution and create a new Build, in this example
v1.1.9 (23).

 MDS: This is when the -sprnnn branch is created.

Step 3: This Build would be turned over to the Support Staff for regression testing of the affected components
which would have been identified in the Developer’s defect resolution documentation.

If regression testing of the affected functionality fails the Support/Developer interaction repeats until the
Production Site defect and all affected components pass regression test, each cycle producing a new Build
increments the version’s Build number. So, the version shipped to the Production Site—and posted for use in
other sites—may be v1.1.9 (23) if several Developer/Support Staff cycles were required.

Step 4: At that point the updated application components are delivered to the Production Site with required
documentation included: Release Notes, Installation/Upgrade Procedure, etc.

 MDS: This is when the -beta branch is created.

Final Step: The Defect Resolution is carried into all inner Code Circles, i.e.: into all other Builds in Production or
in development stages in the Lab.

 MDS: This is the merge activity that occurs when an ‘spr’ and ‘beta’ branch is closed.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 15

Minor Release: ‘Component Support Release’ Process
A minor release would by definition be the addition a new component to an existing version of the application but
no changes to the overall application structure. i.e.: Support for a new I/O Device.

Step 1: An existing version of the application, already in use at the Production Site requesting support for the new
component is chosen with agreement from the site, e.g.: v1.0.5 (124).

 MDS: This is when the -sernnn branch is created.

Step 2: Support for the new component is added, tested, documented and regression testing of any affected
components is performed. A Beta Build is created for the Pilot site, e.g.: v1.1.5 Beta (001).

 MDS: This is when the -sernnn branch is closed.
 MDS: This is when the -beta branch is created.

Step 3: The Beta Release is piloted at the requesting site. Defects are handled via the standard Defect
Resolution Process. After a defined time period with no Severity 3 or higher (2, 1) defects the release promoted
to ‘Production’ status and published for any sites to acquire and deploy, e.g.: v1.1.5 Beta (027) v1.1.5 (001).

 MDS: This is when the -production branch is updated.

Final Step: The Component Support is carried into all inner Code Circles.

Incremental Release: ‘New Feature Release’ Process
A new feature release would by definition be the addition a new feature into an existing version of the application
but no changes to the overall application structure. i.e.: An Operator Screen for the Torque Tool Action.

Step 1: An existing version of the application, already in use at the Production Site requesting support for the new
component is chosen with agreed from the site, e.g.: v1.1.5 (014).

 MDS: This is when the -sernnn branch is created.

Step 2: Support for the new component is added, tested, documented and regression testing of any affected
components is performed. A Beta Build is created for the Pilot site, e.g.: v1.1.6 Beta (001).

 MDS: This is when the -sernnn branch is closed.
 MDS: This is when the -beta branch is created.

Step 3: The Beta Release is piloted at the requesting site. Defects are handled via the standard Defect
Resolution Process. After a defined time period with no Severity 3 or higher (2, 1) defects the release promoted
to ‘Production’ status and published for any sites to acquire and deploy, e.g.: v1.1.6 Beta (007) v1.1.6 (001).

 MDS: This is when the -production branch is updated.

Final Step: The New Feature is carried into all inner Code Circles.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 16

Major Release: ‘Major Release’ Process
A major release implies changes to the overall application structure, like movement to a different Hardware or
Software platform, e.g.: Support for Windows 7 Embedded and .NET 4.0

Step 1: The newest existing version of the application, already in use at the Production Site(s) is selected for the
development effort, e.g.: v1.0.8 (61).

 MDS: This is when the -alpha branch is utilized. The ‘alpha’ branch always existed to guard work in the

‘production’ trunk.

Step 2: The application is migrated to the new platform, tested, documented and regression testing of all
functionalities is performed. An Alpha Build is created for the Support Staff site, e.g.: v2.0.0 Alpha (001).

Step 3: The Alpha Release is passed through System Acceptance Testing (SAT) until it passes all required
Software Test Cases (STC). Defects are handled via the standard Defect Resolution Process. After all the
STCs are passed with no Severity 3 or higher (2, 1) defects then the release is promoted to ‘Beta’ status and a
Beta Build is created for the Pilot site, e.g.: v2.0.0 Beta (001).

 MDS: This is when the -beta branch is created.

Step 4: The Beta Release is piloted at the volunteer site. Defects are handled via the standard Defect
Resolution Process. After a defined time period with no Severity 3 or higher (2, 1) defects the release promoted
to ‘Production’ status and published for any sites to acquire and deploy, e.g.: v2.0.0 (032).

 MDS: This is when the -production branch is updated.

Final Step: There are no inner Code Circles during a ‘Major Release’ cycle.

After 30 years of software development and customer support we believe this is the only way to
properly support Production Critical Software.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 17

Appendix A: Use of Git

GitHub is the Cloud repository for all Builds.

Git is the tool used on a Working Machine (Laptop, Desktop, etc.).

MicroCODE has a company GitHub…

...this is where all the approved ‘Trunks’ and ‘Branches’ are held for all company developers.

Each Software Product will have a minimum of three (3) branches:

• production = the current Build release to all Customers for use in Production
• beta = the next Production release while in Pilot Site
• alpha = development work the future release(s)

See “Git Branching – MicroCODE MDS Naming Conventions” earlier in this document.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 18

NOTE: This process was adapted from the Atlassian Bitbucket Tutorial found here:

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Gitflow Workflow
Gitflow is a legacy Git workflow that was originally a disruptive and novel strategy for managing Git branches. We use a
modified version of Gitflow we call MDS which is designed to support both installed Windows Apps and Web-based
Services. (Web-based Services have moved away from Gitflow somewhat and toward Continuous Improvement (CI),
Continuous Delivery (CD) models. While our MDS process supports CI/CD it is very mindful of the need to protect a
Customer Production Sites with a guarded ‘Production’ trunk that is only changed with a very rigorous process.

What is Gitflow?
Gitflow is an alternative Git branching model that involves the use of feature branches and multiple primary branches. It
was first published and made popular by Vincent Driessen at nvie. Compared to trunk-based development, Gitflow has
numerous, longer-lived branches and larger commits. Under this model, developers create a feature branch and delay
merging it to the main trunk branch until the feature is complete. These long-lived feature branches require more
collaboration to merge and have a higher risk of deviating from the trunk branch. They can also introduce conflicting
updates.

Gitflow can be used for projects that have a scheduled release cycle and for the DevOps best practice of continuous
delivery. This workflow doesn’t add any new concepts or commands beyond what’s required for the Feature Branch
Workflow. Instead, it assigns very specific roles to different branches and defines how and when they should interact. In
addition to feature branches, it uses individual branches for preparing, maintaining, and recording releases. Of course,
you also get to leverage all the benefits of the Feature Branch Workflow: pull requests, isolated experiments, and more
efficient collaboration.

Getting Started
Gitflow is really just an abstract idea of a Git workflow. This means it dictates what kind of branches to set up and how
to merge them together. We will touch on the purposes of the branches below. The git-flow toolset is an actual
command line tool that has an installation process. The installation process for git-flow is straightforward. Packages for
git-flow are available on multiple operating systems. On OSX systems, you can execute brew install git-flow. On windows
you will need to download and install git-flow. After installing git-flow you can use it in your project by executing git flow
init. Git-flow is a wrapper around Git. The git flow init command is an extension of the default git init command and
doesn't change anything in your repository other than creating branches for you.

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 19

1 Development (Alpha) and Master (Production) Branches

Instead of a single Production (‘Master’) branch, Git Flow uses two branches to record the history of
the project. It is based on two main branches (trunks) with infinite lifetime namely Production
(‘Master’) and Development (‘Develop’).

Note: MDS calls the ‘Develop’ trunk ‘Alpha‘ and the ‘Master’ trunk ‘Production’.

• Production Trunk: The Production branch contains the production code and stores the
official release history.

• Alpha Trunk: The Development branch contains pre-production code and serves as an
integration branch for New Features.

Production and Development branch workflow is demonstrated in the given diagram:

It’s also required to tag all commits in the Production branch with a version number. These
represent Releases that can run in a customer’s production facility.

First create a “Production” branch. Then complement the default Production with a Development
(“Alpha”) branch. A simple way to do this is for one developer to create an empty Development
(“Alpha”) branch locally and push it to the server. This branch will contain the complete history of
the project. Other developers should now clone the central repository and create a tracking branch
for development.

MDS: The “Production” trunk, should be named:

• Product-M.m.r-bbb-production

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 20

1.1 Creating a Development (Alpha) Branch

• Without the git-flow extensions:
• git branch development
• git push -u origin devlopment

• When using the git-flow extensions:
• git flow init

• MDS – Without the git-flow extensions:
• git branch Product-M.m.r-000-alpha*
• git push -u origin Product-M.m.r-000-alpha*

• MDS – When using the git-flow extensions:
• git flow init

When using the git-flow extension library, executing “git flow init” on an existing repository will
create the Development (Alpha) branch.

$ git flow init

Initialized empty Git repository in ~/project/.git/
No branches exist yet. Base branches must be created now.
Branch name for production releases: [main] production
Branch name for "next release" development: [develop]alpha

How to name your supporting branch prefixes?
Feature branches? [feature/]ser
Release branches? [release/]beta
Hotfix branches? [hotfix/]spr
Support branches? [support/]support
Version tag prefix? []]v

$ git branch
* alpha
production

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 21

2 Feature (SER) Branch

Each new feature should reside in its own branch, which can be pushed to the central repository for
backup/collaboration. Feature branches use the latest Development as their parent branch. When
a feature is complete, it gets merged back into Development. Features should never interact
directly with the Production branch.

MDS keeps track of every customer problem and request. Every new feature request is recorded in
a Software Enhancement Request (SER). These can only be resolved/closed in three (3) ways:

1) The Request is implemented as a New Feature and Released.
2) The Request is identified as a Duplicate and linked the first SER.
3) Implementing the New Feature is found to be unproductive, destructive, or in conflict with

some core design element of the product, and the correct action is documented and
included in the Release Notes.

Feature branch workflow is demonstrated in the given diagram:

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 22

2.1. Creating a Feature (SER) Branch

• Without git-flow extensions:
• git checkout development
• git checkout -b feature_branch

• With git-flow extensions:
• git flow feature start feature_branch

• MDS – Without git-flow extensions:
• git checkout alpha
• git checkout -b Product-M.m.r-000-sernnn*

• MDS -- With git-flow extensions:
• git flow feature start Product-M.m.r-000-sernnn*

* a unique identifier for a new feature, i.e.: the {SER#NNN}, Software Enhancement Request.

2.2. Finishing a Feature (SER) Branch

• Without git-flow extensions:
• git checkout development
• git merge feature_branch

• With git-flow extensions:
• git flow feature finish feature_branch

• MDS – Without git-flow extensions:
• git checkout alpha
• git merge Product-M.m.r-000-sernnn*

• MDS -- With git-flow extensions:
• git flow feature finish Product-M.m.r-000-sernnn*

* a unique identifier for a new feature, i.e.: the {SER#NNN}, Software Enhancement Request.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 23

3 Release (Beta) Branch

Once Development has acquired enough features for a release (or a predetermined release date is
approaching), we fork a Release branch off of development. Creating this branch starts the next
release cycle, so no new features can be added after this point—only bug fixes, documentation
generation, and other release-oriented tasks should go in this branch. Release branch may branch
off from Development and must merge into both Production and Development.

Note: MDS calls the ‘Develop’ trunk ‘Alpha‘ and the ‘Release’ branch ‘Beta’.

• Alpha Trunk: This Development branch contains pre-production code and serves as an
integration branch for New Features.

• Beta Branch: This Development branch contains a pilot-ready ‘Production Candidate’ that
has a collection of New Features (SERs) and all Hot Fixes (SPRs) that currently reside in the
‘Production’ trunk.

Release branch workflow is demonstrated in the given diagram:

Once the Release branch is ready to ship, it gets merged into Production and tagged with a version
number. In addition, it should be merged back into Development because critical updates (Hot
Fixes) may have been added to the Release branch and they need to be included with the New
Features. So, once the Release is ready to ship, it will get merged into Production and
Development, and then the Release branch will be deleted, because the Production version will
become the Beta copy with a rename that removes the ‘Beta’ designation.

Using a dedicated branch to prepare releases makes it possible for one team to polish the current
release while another team continues working on features for the next release.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 24

3.1. Creating a Release (Beta) Branch

• Without the git-flow extensions:
• git checkout development
• git checkout -b release/0.1.0

• When using the git-flow extensions:
• git flow release start 0.1.0

• MDS – Without git-flow extensions:
• git checkout alpha
• git checkout -b Product-M.m.r-000-beta*

• MDS -- With git-flow extensions:
• git flow release start Product-M.m.r-000-beta*

* a unique identifier version number (M.m.r-000) must be assigned based on the changes,
the -000 (Build #) should be the Build # in Production when the hot fix activity began.

3.2. Finishing a Release (Beta) Branch

• Without git-flow extensions:
• git checkout production
• git merge release/0.1.0

• With git-flow extensions:
• git flow release finish 0.1.0

• MDS – Without git-flow extensions:
• git checkout alpha
• git merge release/Product-M.m.r-000-beta*

• MDS -- With git-flow extensions:
• git flow release finish Product-M.m.r-000-beta*

* a unique identifier version number (M.m.r-000) must be assigned based on the changes,
the -000 (Build #) should be the Build # in Production when the hot fix activity began.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 25

4 Hotfix (SPR) Branch

Maintenance or “Hotfix” branches are used to quickly patch Production releases. Hotfix branches
are necessary to immediately correct a defect in Production. Hotfix branches are a lot like release
branches and feature branches except they’re based on Production instead of Development. This is
the only branch that should fork directly off of Production. As soon as the fix is complete, it should
be merged into both Production and Development (or the current Release branch), and
the Production branch should be tagged with an updated version number.

MDS keeps track of every customer problem and request. Every actual problem is recorded in a
Software Problem Report (SPR). These can only be resolved/closed in three (3) ways:

1) The Defect is corrected by a Hot Fix and Released.
2) The Defect is identified as a Duplicate and linked the first SPR.
3) The Defect report is found to be erroneous, it is ‘Rejected’ and the correct

action is documented and included in the Release Notes.

Hotfix branch workflow is demonstrated in the given diagram:

Having a dedicated line of development for bug fixes lets your team address issues without
interrupting the rest of the workflow or waiting for the next release cycle.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 26

4.1. Creating a Hotfix (SPR) Branch

• Without git-flow extensions:
• git checkout Production
• git checkout -b hotfix_branch

• With git-flow extensions:
• git flow hotfix start hotfix_branch

• MDS – Without git-flow extensions:
• git checkout alpha
• git checkout -b Product-M.m.r-000-sprnnn*

• MDS -- With git-flow extensions:
• git flow feature start Product-M.m.r-000-sprnnn*

* a unique identifier for a hot fix, i.e.: the {SPR#NNN}, Software Problem Report,
the -000 (Build #) should be the Build # in Production when the hot fix activity began.

4.2. Finishing a Hotfix (SPR) Branch

• Without git-flow extensions:
• git checkout production
• git merge hotfix_branch
• git checkout develop
• git merge hotfix_branch

• With git-flow extensions:
• git branch -D hotfix_branch
• git flow hotfix finish hotfix_branch

• MDS – Without git-flow extensions:
• git checkout production
• git merge Product-M.m.r-000-sprnnn*

• git checkout alpha
• git merge Product-M.m.r-000-sprnnn*

• MDS -- With git-flow extensions:
• git branch -D Product-M.m.r-000-sprnnn*
• git flow release finish Product-M.m.r-000-sprnnn*

* a unique identifier for a hot fix, i.e.: the {SPR#NNN}, Software Problem Report,
the -000 (Build #) should be the Build # in Production when the hot fix activity began.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 27

Advantages of Git Flow

Now let’s talk summarize the major advantages provided by Git Flow:

• Ensures a clean state of branches at any given moment in the life cycle of a project
• The naming convention of branches follows a systematic pattern making it easier to

comprehend
• Has extensions and support on most used Git tools
• Ideal in case of maintaining multiple versions in production
• Great for a release-based software workflow
• Offers a dedicated channel for hotfixes to production
• For MicroCODE we need to protect Production Facilities at all times, and we must be

able to Hot Fix the Production and Support versions of a product at any time.

Disadvantages of Git Flow

Well, nothing is ideal, so Git Flow holds some disadvantage as well like:

• Git history becomes unreadable
• The Production/Development branch split is considered redundant and makes the

Continuous Delivery/Integration harder
• Not recommended in case of maintaining a single version in production
• For MicroCODE the history is captured in the naming standards of ‘MDS’ and the

protection of the ‘Production’ branch out weights all other considerations.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 28

Summary

Here we discussed the Git Flow Workflow. Git Flow is one of the many styles of Git workflows
you and your team can utilize. The overall flow of Git Flow is:

1. A development branch is created from production
2. A release branch is created from development
3. All feature branches are created from development
4. When a feature is complete it is merged into the development branch
5. When the release branch is done it is merged into development and production
6. If an issue in production is detected a hotfix branch is created from production
7. Once the hotfix is complete it is merged to both development and production

The overall workflow of MDS is:

1. An alpha branch is created from production
2. A beta branch is created from alpha after all development work is ready for a pilot
3. All ser branches are created from alpha
4. When a ser is complete it is merged into the alpha branch
5. When the beta branch is done (pilot completed) it is merged into alpha and production
6. If an issue in beta is detected a spr branch is created from beta
7. Once the spr is complete it is merged to both beta and alpha and possibly production
8. If an issue in production is detected a spr branch is created from production
9. Once the spr is complete it is merged to both alpha and production and any open beta

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 29

Appendix B: Use of GitHub

GitHub is the Cloud repository for all Builds.

Git is the tool used on a Working Machine (Laptop, Desktop, etc.).

MicroCODE has a company GitHub…

...this is where all the approved ‘Trunks’ and ‘Branches’ are held for all company developers.

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 30

Starting a Hot Fix for a Software Problem Report
1: Fork the Production Release for which you are creating the Hot Fix into your working GitHub Account
2: Clone the Copy of Production Release to your Working Machine
3: Add any files you change on your Working Machine into your Git
4: Commit your changes with a comment: “Product-M.m.r-bbb-production-sprnnn“
5: Push syncs your changes into your remote repository in GitHub.

GitHub: ‘The Cloud’

https://github.com/
coderN

https://github.com/
coder2

https://github.com/
coder1

https://github.com/
MicroCODEIncorporated

https://github.com/
tjmcode

1: Fork

Git: ‘Working Machine’

2: Clone

3: Add

4: Commit

5: Push

Edit files, Create files,
Delete files, add to Git.
git add .

Gather all appropriate
changes into a ‘package’ with
a standard name.
git commit -m ‘name’

Push the changed
files to the cloud.
git push

Pull current version
of a repo to the
‘Working Machine’
git clone
git pull

Create a branch
in your own rpo
git fork

Request integration of
your changes
git request-pull

6: Request

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 31

Visual Studio Code – Integration
VS Code has built-in Git / GitHub integration. The number of differences is shown in the GIT icon.

Clicking on the GIT icon opens the ‘Commit Review’ pane.

Touching a file immediately shows a DIFF split window…

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 32

Clicking the “+” performs a “git add” of that file to the ‘Staged Files’ for a ‘Commit’…

Staged files for a ‘Commit’…

Add a description for the ‘Commit’…

 Application Development Notes

Updated: 04/17/22 © MicroCODE Incorporated 1987-2022 MicroCODE Internal Notes
Document: {2012-05} MicroCODE Software Support Process v010.docx Page 33

Then use the ‘Check Mark’ / ‘Tick’ to perform the ‘Commit’ to GitHub…

Then you click the ‘Sync’ icon or button to ‘Push’ the ‘Committed’ changes to GitHub…

These comments are used in Git / GitHub to document your ‘Commits’…

	Background
	Requirements
	Design
	Activities
	Version Control
	Defect Severity Definition
	Git
	MDS
	Git Branching – MicroCODE MDS Naming Conventions
	MDS – Notes
	Application Version Numbers
	Defect Resolution Process: ‘Defect Correction Release’
	Minor Release: ‘Component Support Release’ Process
	Incremental Release: ‘New Feature Release’ Process
	Major Release: ‘Major Release’ Process
	Appendix A: Use of Git
	Gitflow Workflow
	What is Gitflow?
	Getting Started

	1 Development (Alpha) and Master (Production) Branches
	1.1 Creating a Development (Alpha) Branch

	2 Feature (SER) Branch
	2.1. Creating a Feature (SER) Branch
	2.2. Finishing a Feature (SER) Branch

	3 Release (Beta) Branch
	3.1. Creating a Release (Beta) Branch
	3.2. Finishing a Release (Beta) Branch

	4 Hotfix (SPR) Branch
	4.1. Creating a Hotfix (SPR) Branch
	4.2. Finishing a Hotfix (SPR) Branch

	Advantages of Git Flow
	Disadvantages of Git Flow
	Summary

	Appendix B: Use of GitHub
	Starting a Hot Fix for a Software Problem Report
	Visual Studio Code – Integration

